

# Problem of the Week <br> Problem D and Solution This Number Makes It Perfect 



## Problem

The positive even integers 2 to 1600, inclusive, are each multiplied by the same positive integer, $n$. All of the products are then added together and the resulting sum is a perfect square.

Determine the value of the smallest positive integer $n$ that makes this true.

## Solution

What does the prime factorization of a perfect square look like? Let's look at a few examples: $9=3^{2}, 36=6^{2}=2^{2} 3^{2}$, and $129600=360^{2}=2^{6} 5^{2} 3^{4}$. Notice that the exponent on each of the prime factors in the prime factorization in each of the three examples is an even number.

The positive integer $n$ is the smallest positive integer such that

$$
\begin{equation*}
2 n+4 n+6 n+\cdots+1596 n+1598 n+1600 n \tag{1}
\end{equation*}
$$

is a perfect square.
Factoring (1), we obtain

$$
\begin{align*}
& 2 n(1+2+3+\cdots+798+799+800) \\
= & 2 n\left(\frac{800 \times 801}{2}\right) \\
= & n(800)(801)  \tag{2}\\
= & n[(2)(2)(2)(2)(2)(5)(5)][(3)(3)(89)] \\
= & n\left(2^{5}\right)\left(5^{2}\right)\left(3^{2}\right)(89) \tag{3}
\end{align*}
$$

In going from (2) to (3), we have expressed the $800 \times 801$ as the product of prime factors.
We need to determine what additional factors are required to make the quantity in (3) a perfect square such that $n$ is as small as possible. In order for the exponent on each prime in the prime factorization to be even, we need $n$ to be $89 \times 2=178$. Then the quantity in (3) becomes

$$
n\left(2^{5}\right)\left(5^{2}\right)\left(3^{2}\right)(89)=(2)(89)\left(2^{5}\right)\left(5^{2}\right)\left(3^{2}\right)(89)=\left(2^{6}\right)\left(5^{2}\right)\left(3^{2}\right)\left(89^{2}\right)=\left[\left(2^{3}\right)(5)(3)(89)\right]^{2}
$$

a perfect square.
Therefore, the smallest positive integer is 178 and the perfect square is

$$
178 \times 800 \times 801=114062400=(10680)^{2}
$$



